Четверг, 28.03.2024
Титан. Лист ВТ1-0, пруток ВТ1-0.
Меню сайта
Категории каталога
Титан и сплавы титана. [10]
Свойства титана, обработка и применение титана. Цены на титан.
Каталоги. Металлургия
Stal.pp.net.ua - Российский портал по рынку металлов. Рейтинг сайтов emetals.ru Rustorg.do.am - Российский торговый портал. Рейтинг Досок Объявлений Infoprom - промышленный портал. Рейтинг сайтов Металлоторговцы.ru Металлургический сервер. Металлургический портал METALL-MARKET.RU строительный портал Оборудование, производство и промышленность СтудЗона: рефераты, преподаватели, студенты...
Главная » Статьи » Титан и сплавы титана.

Высокопрочные титановые сплавы

Высокопрочные титановые сплавы

К этой группе относятся сплавы с пределом прочности s в > 1000 МПа, а именно (a + b )-сплавы марок ВТ6, ВТ14, ВТ3-1, ВТ22. Высокая прочность в этих сплавах достигается упрочняющей термообработкой (закалка + старение). Исключение составляет высоколегированный сплав ВТ22, который даже в отожженном состоянии имеет s в >  1000 МПа.

Указанные сплавы наряду с высокой прочностью сохраняют хорошую (ВТ6) и удовлетворительную (ВТ14, ВТ3-1, ВТ22) технологическую пластичность в горячем состоянии, что позволяет получать из них различные полуфабрикаты: листы (кроме ВТ3-1), прутки, плиты, поковки, штамповки, профили и др. Режимы горячей обработки давлением приведены в табл. 17.7. Сплавы ВТ6 и ВТ14 в отожженном состоянии (s в »  850 МПа) могут подвергаться холодной листовой штамповке с малыми деформациями. Механические характеристики основных полуфабрикатов в отожженном и упрочненном состояниях приведены в табл. 17.4–17.6.

Несмотря на гетерофазность структуры, рассматриваемые сплавы обладают удовлетворительной свариваемостью всеми видами сварки, применяемыми для титана. Для обеспечения требуемого уровня прочности и пластичности обязательно проводят полный отжиг, а для сплава ВТ14 (при толщине свариваемых деталей 10–18 мм) рекомендуется проводить закалку с последующим старением. При этом прочность сварного соединения (сварка плавлением) составляет не менее 0,9 от прочности основного металла. Пластичность сварного соединения близка к пластичности основного металла.

Обрабатываемость резанием удовлетворительная. Обработку резанием сплавов можно проводить как в отожженном, так и в термически упрочненном состоянии.

Данные сплавы обладают высокой коррозионной стойкостью в отожженном и термически упрочненном состояниях во влажной атмосфере, морской воде, во многих других агрессивных средах, как и технический титан.

Термическая обработка. Сплавы ВТ3-1, ВТ6, ВТ6С, ВТ14, ВТ22 подвергаются закалке и старению (см. выше). Рекомендуемые режимы нагрева под закалку и старение для монолитных изделий, полуфабрикатов и сварных деталей приведены в табл. 17.10.

Охлаждение при закалке производится в воде, а после старения — на воздухе. Полная прокаливаемость обеспечивается для деталей из сплавов ВТ6, ВТ6С с максимальным сечением до 40–45 мм, а из сплавов ВТ3-1, ВТ14, ВТ22 — до 60 мм.

Для обеспечения удовлетворительного сочетания прочности и пластичности сплавов с (a + b )-структурой после закалки и старения необходимо, чтобы их структура перед упрочняющей термической обработкой была равноосной или «корзиночного плетения». Примеры исходных микроструктур, обеспечивающие удовлетворительные свойства, приведены на рис. 17.4 (1–7 типы).

Таблица 17.10

Режимы упрочняющей термической обработки титановых сплавов

Марка сплава

Температура полиморфного превращения Тпп, ° С

Температура
нагрева под закалку, ° С

Температура
старения, ° С

Продолжительность
старения, ч

ВТ3-1

960–1000

860–900

500–620

1–6

ВТ6

980–1010

900–950

450–550

2–4

ВТ6С

950–990

880–930

450–500

2–4

ВТ8, ВТ9

980–1020

920–940

500–600

1–6

ВТ14

920–960

870–910

480–560

8–16

ВТ22

840–880

690–750

480–540

8–16

 

Исходная игольчатая структура сплава с наличием границ первичного зерна b -фазы (8–9 типы) при перегреве после закалки и старения или отжига приводит к браку — сниженнию прочности и пластичности. Поэтому необходимо избегать нагрева (a + b )-сплавов до температур выше температуры полиморфного превращения, так как перегретую структуру исправить термической обработкой невозможно.

Нагрев при термической обработке рекомендуется производить в электрических печах с автоматической регулировкой и регистрацией температуры. Для предупреждения образования окалины нагрев готовых деталей и листов необходимо проводить в печах с защитной атмосферой или с применением защитных покрытий.

При нагреве под закалку тонких листовых деталей для выравнивания температуры и уменьшения коробления их на под печи укладывается стальная плита толщиной 30–40 мм. Для закалки деталей сложной конфигурации и тонкостенных деталей применяются фиксирующие приспособления для предупреждения коробления и поводки.

После проведения высокотемпературной обработки (закалки или отжига) в печи без защитной атмосферы полуфабрикаты, не подвергающиеся дальнейшей обработке, должны пройти гидропескоструйную обработку или обработку корундовым песком, а листовые изделия — еще и травление.

Применение. Высокопрочные титановые сплавы применяются для изготовления деталей и узлов ответственного назначения: сварные конструкции (ВТ6, ВТ14), турбины (ВТ3-1), штампосварные уз-лы (ВТ14), высоконагруженные детали и штампованные конструкции (ВТ22). Эти сплавы могут длительно работать при температурах до 400 ° С и кратковременно до 750 ° С.

Особенность высокопрочных титановых сплавов как конструкционного материала — их повышенная чувствительность к концентраторам напряжения. Поэтому при конструировании деталей из этих сплавов необходимо учитывать ряд требований (повышенное качество поверхности, увеличение радиусов перехода от одних сечений к другим и т. п.), аналогичных тем, которые существуют при применении высокопрочных сталей.

Категория: Титан и сплавы титана. | Добавил: titan-splav (23.03.2012)
Просмотров: 14016 | Рейтинг: 4.8/49 |
Форма входа
Поиск
Друзья сайта
Статистика
Copyright MyCorp © 2024
Бесплатный конструктор сайтов - uCoz